
 - 1 -

Higher-Order Euclidean Sets || SMT || November 2024

Over the last thirty years, a considerable corpus of research has been built around the
notion of “maximally-even sets” and “Euclidean sets”. One early milestone was Clough and
Douthett’s 1991 article, which established the mathematical properties of maximally even
sets. A second landmark was Godfried Toussaint’s 2005 paper entitled “The Euclidean
Algorithm Generates Traditional Musical Rhythms”, which proposed geometrical analogues
to Clough and Douthett’s method. Justin London’s concept of “non-isochronous meters”
and Jay Rahn’s idea of “diatonic rhythms” represent other fruitful directions in which this
research has progressed. One of the most appealing aspects of this research is that it has
allowed us to see and hear connections between Western tonal music, popular music, and
other music traditions around the globe.

My paper presents an algorithm I’ve developed that generates what I call “higher-order
Euclidean sets”, or “hypereuclidean sets”. Inspired by the concluding paragraphs of Clough
and Douthett’s article, my approach produces a very diverse and complex array of
structures by applying the maximally-even algorithm recursively. Today, I’ll describe
methods that create, analyze, and find higher-order Euclidean sets and trace their
derivation or ancestry. I will also present musical examples that could point the way for
composers wishing to use my methods. All my material is available for free at my web site.
It can be found by scanning the QR code on your handout, or on the title screen of the
presentation.

Familiar to many, the classical Euclidean set is beautifully elegant in its simplicity and
impressive in its ability to model a surprising variety of salient musical structures around
the world. Clough and Douthett’s related formula for generating maximally even sets can
be written as shown in [example 1]. Here, capital E sub-alpha denotes what I will call a
“first-order” set, where k1 represents the desired number of onsets, and n1 is the set’s span
– or, total number of potential onsets. i is simply an iterator, and the square brackets
indicate a floor function – to “round down”. I show a simple example for those of you who,
like me, cannot just visualize this in your heads. There are only two constants (k and n), and
one iterator (i) to keep track of. By setting k1 to 7 and n1 to 12, the method generates a
maximally-even set [0 1 3 5 6 8 10].

Toussaint proposed another way to create this structure, using an algorithm related to
Euclid’s method for finding the greatest common divisor between two integers. We first line
up 7 attack points (represented by “x”es) followed by five rests (represented by periods).
Then we take the five rests and move them below the attack points, continuing in this
manner until we have no remainder, or the remainder is 1. Note that there is one little span
left over in step 4, indicating that the numbers 7 and 12 are relatively prime – meaning they
have no common divisors other than 1. Read vertically, the resulting set is [0 2 3 5 7 8 10],
which is exactly the same as the maximally-even set [0 1 3 5 6 8 10] if you subtract 2 from
each element, modulo 12. While it is fair to say that Clough and Douthett were somewhat

 - 2 -

more inclined towards the pitch domain, Toussaint was more oriented towards rhythm –
but, the method can produce structures in either.

Ableton Live’s built-in Euclidean set generator can make these sets, as shown in example
2. Here I produced the both instances of the set we just generated. They are shown here
arranged in a canon, of interval 2. Here is what this sounds like, played four times in a row.
[play musical example, 0:13 long].

The canon reminds us that by rotating all the onsets clockwise by two positions, we create
a new pattern of onsets. Toussaint called the family of all these rotations a “necklace”: in
his words, “a rhythm necklace is the inter-onset duration interval pattern that disregards
the starting point in the cycle”. Both rhythmic cycles in the Ableton example are members
of the same necklace. For this particular necklace E1(7), 12, Toussaint cites many diferent
rhythmic cycles or timelines used throughout the world.

Music theorists have used this technique to model rhythmic structures in music,
particularly Brad Osborn, who has applied it to songs by the band Radiohead. Osborn aptly
describes such rhythms as “metric-ish”. He identifies at least dozen Euclidean and
maximally even rhythms in Radiohead’s music, from tracks such as “Pyramid Song”,
“Codex” and others. Osborn positions Euclidean rhythms as an appealing middle-ground
between regular, repeating pulse patterns and unpredictable, indeterminant rhythmic
structures.

For all their utility, maximally-even sets and Euclidean sets can only produce structures
that are very “smooth”, by which I mean sets that difer by at most 1 in their inter-onset
intervals. Indeed, this is part of the very definition of a maximally-even set. But when
applied recursively, the algorithm can produce much more variety. At the end of their paper,
Clough and Douthett briefly investigated what they called “second-order” or “high-order”
maximally even sets. However, they only wrote about those which had a place within the
classical tonal system: that is, diatonic scales, seventh chords and triads. They also only
considered only sets of depth 2 and 3, meaning they did not recursively apply their
algorithm more than three times. Could we study all possible sets their methods create?
What about producing sets of depth 4, 5 or more? The answers to both questions is yes.

I will outline my method by walking through an example. Consider the clave timeline, a
ubiquitous rhythmic cycle found in a wide variety of music from sub-Saharan Africa, Brazil,
and Cuba, and found in many genres such as salsa, conga, and Afro-Cuban jazz. This cycle
is shown in the blue box in example 3. It has onsets [0 3 6 10 12] and an IOI of < 3 3 4 2 4 >.
Because it has three diferent inter-onset intervals, it cannot be Euclidean or maximally
even. However, it is easily derived from an intermediate set. First, consider the Euclidean
set E1(140), 16. I will label this the alpha set. This structure has onsets at every time-point
except at 7 and 15. The exponent indicates how many time-points the set is rotated around
the circle, clockwise – in this case, zero. The blue dot indicates the first element of the set,
which corresponds here to time-point zero because the rotation is 0. Now, take these

 - 3 -

fourteen onsets and create another Euclidean set E1(59), 14. This is the beta set. Notice
that the first k value in the alpha set – 14 – has now become n in the beta set. Rotate the
beta set by 9 as shown in the bottom yellow box to yield [0 3 6 9 11]. Finally, use this as an
index set, taking these exact elements in the alpha set of span 16 and discarding the rest.
This produces a set of [0 3 6 10 12], one of the most common representations of the clave
timeline, shown in the blue box. Because we rotated first, then thinned, I call this the
“rotate-first method”. For the sake of convenience, I label this E2(140, 59), 16 where again,
the exponents give the rotations of each kn. The depth – what I call p – is 2, indicated as a
subscript to capital E.

This is a straightforward example of a second-order Euclidean set, inspired by the
examples Clough and Douthett outlined at the end of their paper. In classical first-order
Euclidean sets, k indicates the number of onsets desired. In my method I designate k1 as
the number of onsets in the first-order set, and kn as the number of onsets in the final,
desired set. Since this is a second-order set, we have only k1 and k2. How many sets can be
produced using the parameters that generated the clave timeline? When n equals 16, k2
equals 5, and k1 varies from between 15 and 6 inclusive, we produce exactly 2560 second-
order sets. We will see why this is in a moment, but for now it is suficient to notice that
only 14 of these sets make the clave timeline. These are shown in example 4.

Let us derive the clave timeline another way. This time, we create a first-order Euclidean set
E1(130), 16 as shown in the top yellow box of example 5. Rotate it by 7 to create the alpha
set. Create a second Euclidean set E1(50), 13 shown in the yellow box on the bottom. This is
the beta set. Use this set as an index set on the alpha set. Finally rotate this derived set by
3, as shown in the bottom-right blue box. Notice that this time, we thinned the alpha set by
the beta set first, and then performed the rotation. I call this the subtract-first method. It
produces the clave timeline as E2(137, 53), 16. Like the rotate-first method, the subtract-first
method yields exactly 2560 second-order sets, but now only 10 of them have the desired
onset pattern as shown in example 6.

How does this algorithm work? First, it creates what I call a slate of all n and kn values.
Example 7 shows the slate that produces clave timelines. It is the same for both rotate-first
and subtract-first methods. Slates simply iterate kn+1 values such that all combinations are
produced between n and kn. Slates of third- and higher-order Euclidean sets are a little
more complicated than the one shown in example 7. Next, the algorithm produces all
rotations of the sets involved, which means that unfortunately, complexity increases
exponentially as depth – or “p” – grows linearly. Then, the algorithm goes about calculating
the many derived sets. We can now see why the method generates 2560 sets for the clave
timeline parameters, because each row produces n times n, or 16 times 16 sets (=256). The
sum of all the rows is 256 times 10, or 2560.

At this point my paper makes a methodological swerve towards perception and cognition.
A recent insightful article on microtiming in Music Theory Spectrum by Anne Danielsen,
Mats Johansson and Chris Stover argues that performed rhythm often involves an:

 - 4 -

…interaction between actual sounding events and “virtual” structuring
mechanisms, such as meter, pulse, subdivision, or stylistic figures (the latter
encompassing both style-specific rhythmic patterns and melodic-rhythmic
formulas), which the perceiver projects onto sounding events.

This suggests that rotating an onset-pulse pattern may not produce an equivalent
performance, because “points” on the circle might be more like little “clouds”. A related
critique comes from Mark Gotham, who notes that the visual representation of timelines
on a circle can “lead to some quintessentially spatial relations that do not necessarily
analogize well to temporal patterns”. The ease of rotating attack points around circle
diagrams belies the fact that diferent rotations of the same onset pattern can be perceived
as very diferent rhythmic identities. Yet another cognitive issue one might raise, is that in
higher-order Euclidean sets, the “parent” set can stand at quite a distance from the “child”,
“grandchild,” or “great-grandchild”. What perceptual relevance – if any – do the
intermediate sets have?

To gain perspective on this question, consider the timeline Steve Reich made famous in his
“Clapping Music”. This is an interesting case of a second-order Euclidean rhythm that only
includes IOIs of 1 and 2. It can be derived in two diferent ways using the subtract-first
method, and three ways using the rotate-first method. We see one of these derivations in
example 8. It would appear that the first-order set from which the Clapping Music timeline
is derived, only ofers the ability to remove one onset from the final second-order pattern.
Consequently, the cognitive relevance of this first-order set E1(117), 12 might seem remote
and perceptually unrelated to the derived Clapping Music timeline. This suggests that while
higher-order Euclidean rhythms model a very impressive variety of structures – including all
six of Toussaint’s “good” timelines as second- and third-order structures – we might want to
exercise caution when using them as analytical mechanisms.

Now, let me suggest another use of the method which I personally find appealing: namely,
algorithmic composition. If we generate child, grandchild and great-grandchild sets using
the Clapping Music timeline as parent, we can arguably produce some compelling
rhythmic structures. In the following etude, I made a family of structures using the
subtract-first method, shown in example 9. By successively rotating the three higher order
sets in canon, I produced a short piece with an interesting musical property, shown in
example 10. About two-thirds of the way through, the top part becomes symmetrical,
having an IOI of < 4 4 4 >. This is the only configuration of parent and child sets that can
produce this symmetry. The symmetrical set is in a red box on the score. We hear the entire
piece, without repeats now. [musical example is 0:50 long]

Higher-order Euclidean algorithms can also generate extremely intricate, interrelated
rhythmic polyphony at very high n values. Let’s look at example 11, which shows another
algorithmically generated composition using sets up to depth 5. All of the k values are
relatively prime to their preceding value, i.e., 105 is relatively prime to 128, 71 is relatively

 - 5 -

prime to 105, etc. The rotational values were chosen somewhat ad hoc. The piece exhibits
a quality that Dimitri Tymoczko describes as feeling that there is structure, without
necessarily knowing what that structure is. Perhaps it is the mind’s continual search for
periodicity that enlivens the texture of this exercise. An amusing “gap” occurs about two-
thirds of the way through, when no part has an onset. [musical example is 1:07 long.]

So, in conclusion: Although higher-order Euclidean sets can easily model many complex
static timelines and pitch structures, there are potential cognitive issues that suggest we
might approach their use as an analytical tool with caution. Their future may lie in
algorithmic composition, because the method can produce potentially compelling musical
structures. One of the main roadblocks preventing more comprehensive study has been
the lack of an algorithm that produces all the possible sets to a particular depth. It is not
currently known whether an algorithm exists that runs in less than exponential time. [O(np].
With such an approach now in place, we may begin to explore these sets more
methodically.

