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Over the last thirty years, a considerable corpus of research has been built around the 
notion of “maximally-even sets” and “Euclidean sets”. One early milestone was Clough and 
Douthett’s 1991 article, which established the mathematical properties of maximally even 
sets. A second landmark was Godfried Toussaint’s 2005 paper entitled “The Euclidean 
Algorithm Generates Traditional Musical Rhythms”, which proposed geometrical analogues 
to Clough and Douthett’s method. Justin London’s concept of “non-isochronous meters” 
and Jay Rahn’s idea of “diatonic rhythms” represent other fruitful directions in which this 
research has progressed. One of the most appealing aspects of this research is that it has 
allowed us to see and hear connections between Western tonal music, popular music, and 
other music traditions around the globe. 
 
My paper presents an algorithm I’ve developed that generates what I call “higher-order 
Euclidean sets”, or “hypereuclidean sets”. Inspired by the concluding paragraphs of Clough 
and Douthett’s article, my approach produces a very diverse and complex array of 
structures by applying the maximally-even algorithm recursively. Today, I’ll describe 
methods that create, analyze, and find higher-order Euclidean sets and trace their 
derivation or ancestry. I will also present musical examples that could point the way for 
composers wishing to use my methods. All my material is available for free at my web site. 
It can be found by scanning the QR code on your handout, or on the title screen of the 
presentation. 
 
Familiar to many, the classical Euclidean set is beautifully elegant in its simplicity and 
impressive in its ability to model a surprising variety of salient musical structures around 
the world. Clough and Douthett’s related formula for generating maximally even sets can 
be written as shown in [example 1]. Here, capital E sub-alpha denotes what I will call a 
“first-order” set, where k1 represents the desired number of onsets, and n1 is the set’s span 
– or, total number of potential onsets. i is simply an iterator, and the square brackets 
indicate a floor function – to “round down”. I show a simple example for those of you who, 
like me, cannot just visualize this in your heads. There are only two constants (k and n), and 
one iterator (i) to keep track of. By setting k1 to 7 and n1 to 12, the method generates a 
maximally-even set [ 0 1 3 5 6 8 10 ]. 
 
Toussaint proposed another way to create this structure, using an algorithm related to 
Euclid’s method for finding the greatest common divisor between two integers. We first line 
up 7 attack points (represented by “x”es) followed by five rests (represented by periods). 
Then we take the five rests and move them below the attack points, continuing in this 
manner until we have no remainder, or the remainder is 1. Note that there is one little span 
left over in step 4, indicating that the numbers 7 and 12 are relatively prime – meaning they 
have no common divisors other than 1. Read vertically, the resulting set is [ 0 2 3 5 7 8 10 ], 
which is exactly the same as the maximally-even set [ 0 1 3 5 6 8 10 ] if you subtract 2 from 
each element, modulo 12. While it is fair to say that Clough and Douthett were somewhat 
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more inclined towards the pitch domain, Toussaint was more oriented towards rhythm – 
but, the method can produce structures in either. 
 
Ableton Live’s built-in Euclidean set generator can make these sets, as shown in example 
2. Here I produced the both instances of the set we just generated. They are shown here 
arranged in a canon, of interval 2. Here is what this sounds like, played four times in a row. 
[play musical example, 0:13 long]. 
 
The canon reminds us that by rotating all the onsets clockwise by two positions, we create 
a new pattern of onsets. Toussaint called the family of all these rotations a “necklace”: in 
his words, “a rhythm necklace is the inter-onset duration interval pattern that disregards 
the starting point in the cycle”. Both rhythmic cycles in the Ableton example are members 
of the same necklace. For this particular necklace E1(7), 12, Toussaint cites many diferent 
rhythmic cycles or timelines used throughout the world. 
 
Music theorists have used this technique to model rhythmic structures in music, 
particularly Brad Osborn, who has applied it to songs by the band Radiohead. Osborn aptly 
describes such rhythms as “metric-ish”. He identifies at least dozen Euclidean and 
maximally even rhythms in Radiohead’s music, from tracks such as “Pyramid Song”, 
“Codex” and others. Osborn positions Euclidean rhythms as an appealing middle-ground 
between regular, repeating pulse patterns and unpredictable, indeterminant rhythmic 
structures. 
 
For all their utility, maximally-even sets and Euclidean sets can only produce structures 
that are very “smooth”, by which I mean sets that difer by at most 1 in their inter-onset 
intervals. Indeed, this is part of the very definition of a maximally-even set. But when 
applied recursively, the algorithm can produce much more variety. At the end of their paper, 
Clough and Douthett briefly investigated what they called “second-order” or “high-order” 
maximally even sets. However, they only wrote about those which had a place within the 
classical tonal system: that is, diatonic scales, seventh chords and triads. They also only 
considered only sets of depth 2 and 3, meaning they did not recursively apply their 
algorithm more than three times. Could we study all possible sets their methods create? 
What about producing sets of depth 4, 5 or more? The answers to both questions is yes. 
 
I will outline my method by walking through an example. Consider the clave timeline, a 
ubiquitous rhythmic cycle found in a wide variety of music from sub-Saharan Africa, Brazil, 
and Cuba, and found in many genres such as salsa, conga, and Afro-Cuban jazz. This cycle 
is shown in the blue box in example 3. It has onsets [ 0 3 6 10 12 ] and an IOI of < 3 3 4 2 4 >. 
Because it has three diferent inter-onset intervals, it cannot be Euclidean or maximally 
even. However, it is easily derived from an intermediate set. First, consider the Euclidean 
set E1(140), 16. I will label this the alpha set. This structure has onsets at every time-point 
except at 7 and 15. The exponent indicates how many time-points the set is rotated around 
the circle, clockwise – in this case, zero. The blue dot indicates the first element of the set, 
which corresponds here to time-point zero because the rotation is 0. Now, take these 
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fourteen onsets and create another Euclidean set E1(59), 14. This is the beta set. Notice 
that the first k value in the alpha set – 14 – has now become n in the beta set. Rotate the 
beta set by 9 as shown in the bottom yellow box to yield [ 0 3 6 9 11 ]. Finally, use this as an 
index set, taking these exact elements in the alpha set of span 16 and discarding the rest. 
This produces a set of [ 0 3 6 10 12 ], one of the most common representations of the clave 
timeline, shown in the blue box. Because we rotated first, then thinned, I call this the 
“rotate-first method”. For the sake of convenience, I label this E2(140, 59), 16 where again, 
the exponents give the rotations of each kn. The depth – what I call p – is 2, indicated as a 
subscript to capital E. 
 
This is a straightforward example of a second-order Euclidean set, inspired by the 
examples Clough and Douthett outlined at the end of their paper. In classical first-order 
Euclidean sets, k indicates the number of onsets desired. In my method I designate k1 as 
the number of onsets in the first-order set, and kn as the number of onsets in the final, 
desired set. Since this is a second-order set, we have only k1 and k2. How many sets can be 
produced using the parameters that generated the clave timeline? When n equals 16, k2 
equals 5, and k1 varies from between 15 and 6 inclusive, we produce exactly 2560 second-
order sets. We will see why this is in a moment, but for now it is suficient to notice that 
only 14 of these sets make the clave timeline. These are shown in example 4. 
 
Let us derive the clave timeline another way. This time, we create a first-order Euclidean set 
E1(130), 16 as shown in the top yellow box of example 5. Rotate it by 7 to create the alpha 
set. Create a second Euclidean set E1(50), 13 shown in the yellow box on the bottom. This is 
the beta set. Use this set as an index set on the alpha set. Finally rotate this derived set by 
3, as shown in the bottom-right blue box. Notice that this time, we thinned the alpha set by 
the beta set first, and then performed the rotation. I call this the subtract-first method. It 
produces the clave timeline as E2(137, 53), 16. Like the rotate-first method, the subtract-first 
method yields exactly 2560 second-order sets, but now only 10 of them have the desired 
onset pattern as shown in example 6. 
 
How does this algorithm work? First, it creates what I call a slate of all n and kn values. 
Example 7 shows the slate that produces clave timelines. It is the same for both rotate-first 
and subtract-first methods. Slates simply iterate kn+1 values such that all combinations are 
produced between n and kn. Slates of third- and higher-order Euclidean sets are a little 
more complicated than the one shown in example 7. Next, the algorithm produces all 
rotations of the sets involved, which means that unfortunately, complexity increases 
exponentially as depth – or “p” – grows linearly. Then, the algorithm goes about calculating 
the many derived sets. We can now see why the method generates 2560 sets for the clave 
timeline parameters, because each row produces n times n, or 16 times 16 sets (=256). The 
sum of all the rows is 256 times 10, or 2560. 
 
At this point my paper makes a methodological swerve towards perception and cognition. 
A recent insightful article on microtiming in Music Theory Spectrum by Anne Danielsen, 
Mats Johansson and Chris Stover argues that performed rhythm often involves an: 



 - 4 - 

 
…interaction between actual sounding events and “virtual” structuring 
mechanisms, such as meter, pulse, subdivision, or stylistic figures (the latter 
encompassing both style-specific rhythmic patterns and melodic-rhythmic 
formulas), which the perceiver projects onto sounding events. 

 
This suggests that rotating an onset-pulse pattern may not produce an equivalent 
performance, because “points” on the circle might be more like little “clouds”. A related 
critique comes from Mark Gotham, who notes that the visual representation of timelines 
on a circle can “lead to some quintessentially spatial relations that do not necessarily 
analogize well to temporal patterns”. The ease of rotating attack points around circle 
diagrams belies the fact that diferent rotations of the same onset pattern can be perceived 
as very diferent rhythmic identities. Yet another cognitive issue one might raise, is that in 
higher-order Euclidean sets, the “parent” set can stand at quite a distance from the “child”, 
“grandchild,” or “great-grandchild”. What perceptual relevance – if any – do the 
intermediate sets have? 
 
To gain perspective on this question, consider the timeline Steve Reich made famous in his 
“Clapping Music”. This is an interesting case of a second-order Euclidean rhythm that only 
includes IOIs of 1 and 2. It can be derived in two diferent ways using the subtract-first 
method, and three ways using the rotate-first method. We see one of these derivations in 
example 8. It would appear that the first-order set from which the Clapping Music timeline 
is derived, only ofers the ability to remove one onset from the final second-order pattern. 
Consequently, the cognitive relevance of this first-order set E1(117), 12 might seem remote 
and perceptually unrelated to the derived Clapping Music timeline. This suggests that while 
higher-order Euclidean rhythms model a very impressive variety of structures – including all 
six of Toussaint’s “good” timelines as second- and third-order structures – we might want to 
exercise caution when using them as analytical mechanisms. 
 
Now, let me suggest another use of the method which I personally find appealing: namely, 
algorithmic composition. If we generate child, grandchild and great-grandchild sets using 
the Clapping Music timeline as parent, we can arguably produce some compelling 
rhythmic structures. In the following etude, I made a family of structures using the 
subtract-first method, shown in example 9. By successively rotating the three higher order 
sets in canon, I produced a short piece with an interesting musical property, shown in 
example 10. About two-thirds of the way through, the top part becomes symmetrical, 
having an IOI of < 4 4 4 >. This is the only configuration of parent and child sets that can 
produce this symmetry. The symmetrical set is in a red box on the score. We hear the entire 
piece, without repeats now. [musical example is 0:50 long] 
 
Higher-order Euclidean algorithms can also generate extremely intricate, interrelated 
rhythmic polyphony at very high n values. Let’s look at example 11, which shows another 
algorithmically generated composition using sets up to depth 5. All of the k values are 
relatively prime to their preceding value, i.e., 105 is relatively prime to 128, 71 is relatively 
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prime to 105, etc. The rotational values were chosen somewhat ad hoc. The piece exhibits 
a quality that Dimitri Tymoczko describes as feeling that there is structure, without 
necessarily knowing what that structure is. Perhaps it is the mind’s continual search for 
periodicity that enlivens the texture of this exercise. An amusing “gap” occurs about two-
thirds of the way through, when no part has an onset. [musical example is 1:07 long.] 
 
So, in conclusion: Although higher-order Euclidean sets can easily model many complex 
static timelines and pitch structures, there are potential cognitive issues that suggest we 
might approach their use as an analytical tool with caution. Their future may lie in 
algorithmic composition, because the method can produce potentially compelling musical 
structures. One of the main roadblocks preventing more comprehensive study has been 
the lack of an algorithm that produces all the possible sets to a particular depth. It is not 
currently known whether an algorithm exists that runs in less than exponential time. [O(np]. 
With such an approach now in place, we may begin to explore these sets more 
methodically. 
 


